169 research outputs found

    Reexamination of Hagen-Poiseuille flow: shape-dependence of the hydraulic resistance in microchannels

    Get PDF
    We consider pressure-driven, steady state Poiseuille flow in straight channels with various cross-sectional shapes: elliptic, rectangular, triangular, and harmonic-perturbed circles. A given shape is characterized by its perimeter P and area A which are combined into the dimensionless compactness number C = P^2/A, while the hydraulic resistance is characterized by the well-known dimensionless geometrical correction factor alpha. We find that alpha depends linearly on C, which points out C as a single dimensionless measure characterizing flow properties as well as the strength and effectiveness of surface-related phenomena central to lab-on-a-chip applications. This measure also provides a simple way to evaluate the hydraulic resistance for the various shapes.Comment: 4 pages including 3 figures. Revised title, as publishe

    Topology and shape optimization of induced-charge electro-osmotic micropumps

    Get PDF
    For a dielectric solid surrounded by an electrolyte and positioned inside an externally biased parallel-plate capacitor, we study numerically how the resulting induced-charge electro-osmotic (ICEO) flow depends on the topology and shape of the dielectric solid. In particular, we extend existing conventional electrokinetic models with an artificial design field to describe the transition from the liquid electrolyte to the solid dielectric. Using this design field, we have succeeded in applying the method of topology optimization to find system geometries with non-trivial topologies that maximize the net induced electro-osmotic flow rate through the electrolytic capacitor in the direction parallel to the capacitor plates. Once found, the performance of the topology-optimized geometries has been validated by transferring them to conventional electrokinetic models not relying on the artificial design field. Our results show the importance of the topology and shape of the dielectric solid in ICEO systems and point to new designs of ICEO micropumps with significantly improved performance

    Topology and shape optimization of induced-charge electro-osmotic micropumps

    Get PDF
    For a dielectric solid surrounded by an electrolyte and positioned inside an externally biased parallel-plate capacitor, we study numerically how the resulting induced-charge electro-osmotic (ICEO) flow depends on the topology and shape of the dielectric solid. In particular, we extend existing conventional electrokinetic models with an artificial design field to describe the transition from the liquid electrolyte to the solid dielectric. Using this design field, we have succeeded in applying the method of topology optimization to find system geometries with non-trivial topologies that maximize the net induced electro-osmotic flow rate through the electrolytic capacitor in the direction parallel to the capacitor plates. Once found, the performance of the topology optimized geometries has been validated by transferring them to conventional electrokinetic models not relying on the artificial design field. Our results show the importance of the topology and shape of the dielectric solid in ICEO systems and point to new designs of ICEO micropumps with significantly improved performance.Comment: 18 pages, latex IOP-style, 7 eps figure

    Optimal Homogenization of Perfusion Flows in Microfluidic Bio-Reactors: A Numerical Study

    Get PDF
    In recent years, the interest in small-scale bio-reactors has increased dramatically. To ensure homogeneous conditions within the complete area of perfused microfluidic bio-reactors, we develop a general design of a continually feed bio-reactor with uniform perfusion flow. This is achieved by introducing a specific type of perfusion inlet to the reaction area. The geometry of these inlets are found using the methods of topology optimization and shape optimization. The results are compared with two different analytic models, from which a general parametric description of the design is obtained and tested numerically. Such a parametric description will generally be beneficial for the design of a broad range of microfluidic bioreactors used for, e.g., cell culturing and analysis and in feeding bio-arrays

    Dynamical Organization around Turbulent Bursts

    Full text link
    The detailed dynamics around intermittency bursts is investigated in turbulent shell models. We observe that the amplitude of the high wave number velocity modes vanishes before each burst, meaning that the fixed point in zero and not the Kolmogorov fixed point determines the intermittency. The phases of the field organize during the burst, and after a burst the field oscillates back to the laminar level. We explain this behavior from the variations in the values of the dissipation and the advection around the zero fixed point.Comment: 4 pages, REVTex, 3 figures in one ps-fil

    Biomarkers for exposure to ambient air pollution--comparison of carcinogen-DNA adduct levels with other exposure markers and markers for oxidative stress.

    Get PDF
    Human exposure to genotoxic compounds present in ambient air has been studied using selected biomarkers in nonsmoking Danish bus drivers and postal workers. A large interindividual variation in biomarker levels was observed. Significantly higher levels of bulky carcinogen-DNA adducts (75.42 adducts/10(8) nucleotides) and of 2-amino-apidic semialdehyde (AAS) in plasma proteins (56.7 pmol/mg protein) were observed in bus drivers working in the central part of Copenhagen, Denmark. In contrast, significantly higher levels of AAS in hemoglobin (55.8 pmol/mg protein), malondialdehyde in plasma (0. 96 nmol/ml plasma), and polycyclic aromatic hydrocarbon (PAH)-albumin adduct (3.38 fmol/ microg albumin) were observed in the suburban group. The biomarker levels in postal workers were similar to the levels in suburban bus drivers. In the combined group of bus drivers and postal workers, negative correlations were observed between bulky carcinogen-DNA adduct and PAH-albumin levels (p = 0.005), and between DNA adduct and [gamma]-glutamyl semialdehyde (GGS) in hemoglobin (p = 0.11). Highly significant correlations were found between PAH-albumin adducts and AAS in plasma (p = 0.001) and GGS in hemoglobin (p = 0.001). Significant correlations were also observed between urinary 8-oxo-7, 8-dihydro-2'-deoxyguanosine and AAS in plasma (p = 0.001) and PAH-albumin adducts (p = 0.002). The influence of the glutatione S-transferase (GST) M1 deletion on the correlation between the biomarkers was studied in the combined group. A significant negative correlation was only observed between bulky carcinogen-DNA adducts and PAH-albumin adducts (p = 0.02) and between DNA adduct and urinary mutagenic activity (p = 0.02) in the GSTM1 null group, but not in the workers who were homozygotes or heterozygotes for GSTM1. Our results indicate that some of the selected biomarkers can be used to distinguish between high and low exposure to environmental genotoxins
    corecore